
An Assessment of Beowulf-class Computing for NASA
Requirements: Initial Findings from the First NASA
Workshop on Beowulf-class Clustered Computing

Thomas Sterling
NASA Jet Propulsion Laboratory
California Institute of Technology

tron@cacar.caltech.edu

Tom Cwik
NASA Jet Propulsion Laboratory

cwik@jpl.nasa.gov

Don Becker
Center of Excellence for Space Data and Information Science

Goddard Space Flight Center
becker@cesdis1.gsfc.nasa.gov

John Salmon
California Institute of Technology

johns@cacr.caltech.edu

Mike Warren
Los Alamos National Laboratory

msw@cacr.caltech.edu

Bill Nitzberg
NASA Ames Research Center

nitzberg@nas.nasa.gov

Abstract—The Beowulf class of parallel computing machine
started as a small research project at NASA Goddard Space
Flight Center’s Center of Excellence in Space Data and In-
formation Sciences (CESDIS). From that work evolved a
new class of scalable machine comprised of mass market
common off-the-shelf components (M2COTS) using a freely
available operating system and industry-standard software
packages. A Beowulf-class system provides extraordinary
benefits in price-performance. Beowulf-class systems are in
place and doing real work at several NASA research centers,
are supporting NASA-funded academic research, and operat-
ing at DOE and NIH. The NASA user community conducted
an intense two-day workshop in Pasadena, California on
October 22-23, 1997. This first workshop on Beowulf-class
systems consisted primarily of technical discussions to
establish the scope of opportunities, challenges, current
research activities, and directions for NASA computing
employing Beowulf-class systems. The technical discussions
ranged from application research to programming
methodologies. This paper provides an overview of the
findings and conclusions of the workshop. The workshop
determined that Beowulf-class systems can deliver multi-
Gflops performance at unprecedented price-performance but
that software environments were not fully functional or
robust, especially for larger “dreadnought”-scale systems. It
is recommended that the Beowulf community engage in an
activity to integrate, port, or develop, where appropriate,
necessary components of the software infrastructure to fully
realize the potential of Beowulf-class computing to meet
NASA and other agency computing requirements.

TABLE of CONTENTS

1. Introduction
2. A Revolution in Price-Performance
3. Major Findings
4. System Area Network Technology and Scaling
5. Applications and Algorithms
6. System Software and Tools

7. Scalability
8. Heterogeneous Computing
9. Future Directions
10. Summary of Conclusions

1. INTRODUCTION

NASA is relying on a policy of “better, faster, cheaper” to
accomplish more of its mission in shorter time with reduced
budget. Many aspects of the broad and growing NASA
mission rely on the availability of advanced computing
capability including science, engineering, data assimilation,
spaceborne flight and instrumentation control, data archiving
and dissemination, signal processing, and simulation. High-
end computing in particular has been a significant challenge
due to a number of factors which have limited their avail-
ability. These include high cost, decreasing number of
vendors, variability of architecture types across vendors and
between successive generations of a given vendor, and often
inadequate software environments. An alternative approach
to achieving medium to high-end computing is the direct
application of mass market commodity off-the-shelf
(M2COTS) PC technology. Recent advances in capability
and price have contributed to their emergence as a viable
path to scalable computing systems for scientific and
engineering applications. Beowulf is an early NASA project
to explore and develop this potential opportunity for NASA
mission computing requirements. Beowulf-class systems are
being employed at many NASA centers for diverse uses
including Earth and space sciences, computational aero-
sciences, and computer science investigations. The first
NASA workshop on Beowulf-class clustered computing was
held on October 22 and 23, 1997 in Pasadena, CA sponsored
by the NASA Ames Research Center and hosted by the Jet
Propulsion Laboratory. This paper presents an early
assessment of Beowulf-class computing systems based on
the findings of that workshop and reports of various studies
presented there.

2. A REVOLUTION in PRICE-PERFORMANCE

In September, 1996 at the DOE Los Alamos National
Laboratory and the NASA Jet Propulsion Laboratory in
collaboration with Caltech, two medium-scale parallel
M2COTS systems were installed. By October both sites had
performed a complex N-body gravitational simulation of 2
million particles using an advanced tree-code algorithm.
Each of these systems cost approximately $50,000 and
achieved a sustained performance of 1.19 Gflops and 1.26
Gflops, respectively. These two systems were demonstrated
at Supercomputing‘96 in Pittsburgh and were connected
together on the floor for the first time using 16-100 Mbps
Fast Ethernet point-to-point lines. The same code was run
again and achieved a sustained capability of over 2 Gflops—
without further optimization of the code for this new
configuration. These results were of sufficient interest that a
full-page news article entitled “Do it yourself
Supercomputers” was published in Science in December
1996 . The importance of this experiment was that it
demonstrated that real world science applications could be
performed for a price-performance of approximately
$32/MFlops; roughly 10 times less than that of commercial
vendor offerings. Since then, significant reductions in cost
have occurred such that essentially the same system can be
acquired for less than $35,000. It should also be noted that
in that same period, some vendor price reductions have been
aggressive and in certain cases, measured price-performance
differential between Beowulf and vendor offerings can be as
little as a factor of 4 in favor of Beowulf-class systems.

A interrelated sequence of incremental changes in the
complicated nonlinear tradeoff space has led to this dramatic
new direction in parallel computing. One is the significant
reduction in vendor supported high performance computing.
While there were once many companies that were dedicated
to producing high-end systems, today there are only four
such companies and none of these consider this class of
system to be their main product line. Companies like Cray
Research, Inc. and Convex have been acquired by other
mainline workstation and server corporations like Silicon
Graphics, Inc. and Hewlett Packard, respectively. And these
appear to be supporting market strategies that limit
scalability of these systems. A second change is that the
performance and capacity of M2COTS-based systems have
converged with the capabilities of their workstation oriented
counterparts. PC processors and workstation processors are
now within the same performance regime. This is due to the
rapid increase in floating point performance improvement of
PCs over the last three generations which is roughly a factor
of 18 while the improvement for workstation processors
over the same period is about a factor of 5, both remarkable
but clearly the PC is catching up. Both class systems now
use the same memories, and interface standards (e.g., PCI).
Secondary storage for PCs using EIDE drives is close to that
of SCSI-based systems in capacity and performance but
significantly less expensive. A major difference between PC
and workstation desktop computing used to be their software
environments. While workstations had sophisticated Unix
operating systems, PCs were limited to DOS. Today, PCs
run Linux which is equal to or even superior to any of the
vendor offered Unix-like environments and Linux-based PCs

are replacing Unix workstations as the single user platform
of choice in many academic institutions. It may be that
Linux has the single largest installed base of any Unix-like
software available today. With the advent of Fast Ethernet,
low cost 100 Mbps communications is now M2COTS
providing $200 per port price for moderate configurations.
Software for Fast Ethernet is now available under Linux for
virtually every network interface card. As will be seen, this
level of interconnect bandwidth is both necessary and
sufficient for many applications and thus balanced clusters
using PCs can now be implemented. Finally, MPPs from
the era of the HPCC program established a relatively low
level of expectation in quality of parallel programming
model and runtime execution system. This expected
paradigm, message passing, has been formalized and
standardized in the MPI distributed programming library and
is available on essentially all commercial parallel computers
as well as on Beowulf. The result of all of these trends is
that in the 1997 and 1998 time frame, clusters of PCs have
become a viable alternative to vendor supplied parallel
computers for many (but not all) science and engineering
applications.

Beowulf-class Clustered PC Systems

What, then, is a Beowulf-class system? It is a combination
of hardware, software, and usage which while not all
encompassing, yields a domain of computing that is
scalable, exhibits excellent price-performance, provides a
sophisticated and robust environment, and has broad
applicability. All Beowulf-class systems comprise clusters
of PCs, sometimes referred to as a “pile of PCs”. In most
cases, the processor is of the Intel X86 family (e.g., 80486,
Pentium, Pentium Pro) but does not exclude other
architectures such as the DEC Alpha or Power PC if
integrated in a low cost motherboard incorporating de facto
industry interface standards.

Beowulf-class systems exclusively employ COTS
technology, usually targeted to the mass market where cost
benefits of mass production and distribution drive prices
down. The exception to this is in global networking
technology which while COTS, is not mass market due to
the relatively small volume. In this case, a bound is placed
on the cost per port and if networking vendors can provide
their product within that cost framework, they are included.

Beowulf-class systems employ Unix-like operating systems
with source code availability and low (or no) cost. The cost
issue is important because to pay for an O/S license for each
node of a multihundred-node Beowulf cluster could be
prohibitively expensive. Source code availability is
important because it enables custom modifications to
facilitate parallel computation. Both Linux and BSD are
good examples of such software. However, Solaris is also
available from Sun Microsystems and with certain
customers they have established formal working
relationships that achieve the same end. It should be noted
that other cluster PC work is being conducted based on the
Windows NT operating system.

Beowulf-class systems employ message passing execution
models. Usually these are explicit models such as MPI,
PVM, or in the near future MPI-2, with some use of low-
level mechanisms such as the direct use of sockets. Implicit
use of message passing is also employed and is likely to
become a larger part of the application codes over time. BSP
and HPF provide the user with the appearance of a global
name space but are sufficiently constraining as an API that
the underlying compilers can automatically insert message
passing calls, relieving the programmer of this burden.
Some experimental software supported distributed shared
memory programming models have been developed. But
although the programmer needs not handle the actual
generation of message traffic, locality management is still
crucial to effective parallel execution. Many programmers
feel that given this hands-on locality management
requirement, they might as well use explicit message
passing.

While there are many important applications in data pro-
cessing, the focus for Beowulf-class systems is science and
engineering applications. These are routinely (but not
always) floating point intensive but even so involve a
substantial amount of memory access behavior. Some such
problems are truly data intensive such as data assimilation
from large remote scientific sensors or data archiving for
future scientific data product generation. Beowulfs are
finding significant use in computer science research for the
development of new tools and environments such as for
metacomputing where control over a testbed is key to early
development, even when the end software will be employed
on publicly accessible systems. Probably, the fastest
growing area of Beowulf use is as a learning platform for
computer science education. These systems offer flexibility
and price advantages over vendor offerings that make them
ideal for pedagogical purposes.

Beowulf-class systems are just one of a large assortment of
parallel computing system types. They are an example of
general clustered computing. This is distinguished from
metacomputing that may exploit computers all over the
country through the internet, tightly coupled systems that
include classical mainframes along with MPPs and SMPs,
and vector and SIMD architectures that employ efficient
hardware mechanisms for managing a certain type of data and
flow control structure. Clustered computing assumes that
each node has its own standalone operating system connected
by moderate to high latency LANs. Workstation clusters
such as the COW or NOW work examined many of the
issues and developed some solutions now being confronted
by the Beowulf-class systems. Another form of clustering is
cycle harvesting where networked workstations lying idle are
employed on off hours to perform some joint usually
embarrassingly parallel workload. Beowulfs fall under the
Pile of PCs category using M^2COTS for dedicated
moderately coupled systems. NT clusters also fall under the
Pile of PCs grouping as do PCs combined for distributed
shared memory computation using hardware and software
tools.

Advantages of Beowulf

Except for certain examples of special purpose devices and
some applications of reconfigurable logic, Beowulf-class
systems achieve the best price-performance available in any
scalable system. There are some exceptions to this where
applications are of such a form and structure that they are
unsuitable for Beowulf-class systems, exhibiting poor
performance. But for application codes suitable to them,
Beowulf-class systems show superior performance for
comparably priced systems.

But there are a number of additional advantages that make
Beowulf-class systems particularly well suited for certain
environments. One broad advantage is their rapid response to
technology trends. The latest advances in microprocessor and
other mass market technologies tend to find their way into
PCs faster than to other platforms. MPPs, SMPs and other
moderate to high-end parallel computers require long design
cycles and the technology upon which they are based must
be available at the beginning. Therefore, it is often the case
that vendor parallel systems incorporate technology that is
two to three years old. Technology found in Beowulf-class
systems can be as little as a few month old (at procurement)
because there is no design cycle; once part of a M2COTS
subsystem, it can be immediately migrated into a Beowulf.

Many manufacturers and distributors produce, integrate, and
market hardware systems and subsystems that meet de facto
industry standards developed through the evolution of the PC
platform. This produces competition for virtually every
aspect of technology making up Beowulf-class systems and
there is no single-point vendor to which Beowulf is
vulnerable. Even Intel has competition and must meet its
own object code computability requirements. Thus the
Beowulf user gets market-driven low prices with second-
sourcing on essentially all parts.

One of the most powerful aspects of the Beowulf approach
is “just-in-place” configuration. The organization or
topology of a Beowulf-class system can be devised by the
end user (or system administrator) at the time of installation.
The structure can reflect the latest in technology
opportunity, or special data flow paths associated with a
particular application or workload. Furthermore, such
organization can be reversed or changed to adapt to changing
needs of new subsystem capabilities. This is not only true
with the network but also for the subsystems integrated
within a given nodes. As disk prices drop and densities
increase, up grades to secondary storage become routine.
Beowulf-class systems are scalable. Initially, such systems
were limited to 8 or 16 nodes with a couple of examples of
32- and 48-node systems in 1996. Now, there are many sites
with systems comprising over 100 nodes and plans to
implement systems of a few hundred nodes within the year.
There is at least one example of a thousand node system in
the works. Although not a Beowulf-class system, the ASCI
Red system incorporates the identical chip level technology
as that of Beowulf with the exception of the NIC (network
interface controller) and shows effective computation out to
many thousands of processors. Much work remains to be
done on system organization, networking, and software

infrastructure to make these systems highly scalable across
the broadest range of problems, but today, many problems
are known to scale at least beyond a hundred nodes.

Beowulf-class systems leverage the enormous body of
software developed by the computer science community and
continues to draw upon this source as it integrates an ever
increasing array of tools to facilitate use of these systems.
Linux combined with the Gnu compilers and tools, X
windows, MPI, and a host of other contributors makes up a
powerful set of capabilities. This brings a lot of developers
to arena either intentionally or otherwise to produce new
software useful to Beowulf. These include the parallel
programming methodologies found on virtually all other
vendor supplied parallel computers such as MPI.

The NASA Beowulf Project

Beowulf-class systems and concepts have been developed,
sometimes independently, at a number of R&D organiza-
tions around the country. One of the earliest was the
Beowulf project, from which the name of this class of
computing has been derived. The Beowulf project was
initiated in late 1993 as part of the NASA HPCC Earth and
space sciences program at the Goddard Space Flight Center.
This general research program called for a single user
“gigaflops” science workstation. At the time, that scale of
performance was unavailable from the vendors for less than
half a million dollars. An evaluation of the requirements for
a scientific station for NASA showed that disk access
capacity and bandwidth was far more important to user
response time than was floating point performance. A
typical session would involve the scientist loading large data
sets from a central file server over a shared local area
network (LAN). Because the disk and memory space of
workstations at that time were relatively small, many of
these accesses were redundant copying in the same data
repeatedly. This led to long response times to the user, and
congestion for shared file server and LAN resources.
Analysis showed that for the price of a high-end scientific
workstation, assumed to be $50,000, a cluster of low cost
PCs could be assembled with an order of magnitude larger
disk capacity and approximately 8 times the disk bandwidth.
Such a system would comprise 16 80486 (100 MHz) PCs
with 32 MBytes of memory and 1.6 GBytes of disk per
node, integrated with 10 Mbps Ethernet. The system would
be capable of a peak performance of approximately 1
gigaOPS. The requirement for an accessible operating
system similar to those used on scientific workstations was
satisfied by the then experimental Linux operating system.
The critical gap was the lack of adequate low-level
networking software. This was recognized as an important
enabling technology. Fortunately, an expert in this area was
available. All the elements of a new project were available: a
charter, funding, a vision, the enabling technology, and the
necessary talent. The Beowulf project was born.

The Beowulf project was devised to address a set of key
questions to determine the viability of the opportunities this
class of computing might provide. The first and most
fundamental question was if and how to harness a pile of

PCs to do real world applications? If so, what level of price-
performance gain could be achieved over conventional vendor
products of comparable performance? On such a system what
was required to devise a software environment to manage PC
clusters? And, could PC clusters be scaled to hundreds of
nodes to achieve supercomputer performance? A number of
issues pertinent to Beowulf-class systems relate to these
questions. Hardware related subjects include interconnect
bandwidth and latency, both of which impact system
scalability. Software issues are the programming
environments and resource management tools. Another issue
is how these systems evolve in the presence of rapid
technology changes. Finally, the possibility of supporting
distributed shared memory models of programming and
computation must be considered.

The Beowulf project has gone through three generations of
processor technology and networking technology as well as
critical transitions in motherboards and rapid improvements
in disk. The focus for the project has been on applications,
networking, facilitating middleware, and scalability. A year
ago, JPL and Caltech began a Beowulf project with a strong
emphasis on applications. NASA Ames Research Center
also began the Whitney project, another Beowulf-class
system with a strong emphasis on system tools. In the fall
of 1996, using the new Pentium Pro (200 MHz) processor-
based 16-node system, both JPL/Caltech and LANL
performed the N-body calculation achieving > 1 Gflops
sustained performance and > 2 Gflops on the floor at SC‘96.
Large systems of over 100 processors were assembled at
both GSFC and JPL/Caltech in the Fall of 1997 to
demonstrate and evaluate scalability. A number of tutorials
have been conducted on “How to Build a Beowulf” at various
conferences and a book of that title is in the works. All of
these activities culminated in the NASA Beowulf workshop
in October, 1997.

3. MAJOR FINDINGS

The first NASA Workshop on Beowulf-class Clustered
Computing considered the broad set of issues related to this
emerging technology. While some of the detailed issues are
discussed in the following sections, the strategic findings of
the workshop are summarized here.

 NASA Beowulf Sites : Beowulf-class clustered systems
employing mass market commodity off the shelf (M2COTS)
components are being employed by a number of groups at
several NASA centers for a variety of purposes. This type of
parallel computing is likely to be the single fastest growing
category in 1998 both within NASA and across the nation’s
high performance computing community.

 NASA Beowulf Applications : Beowulf-class clustered
computing can be an important source of medium to high-
end computing for many NASA mission problems. A
number of NASA related applications have been successfully
demonstrated on systems ranging up towards a hundred
processors achieving several Gflops sustained performance
and unprecedented price-performance.

 Advantages of Beowulf : Beowulf-class systems are
distinguished from commercial parallel systems in critical
ways including superior price-performance, high flexibility,
reconfigurability, rapid response to technology advances,
invulnerability to single vendor decisions, stable system
architecture class, and the human benefits of “computer
ownership.”
 Limitations of Beowulf : Beowulf-class systems are not
appropriate for all applications or user environments and
they should be adopted only after determination of their
suitability to meet specific requirements.

 Network Bandwidth and Latency Issues : The primary
bottlenecks to Beowulf-class system scaling and efficiency
are network bi-section bandwidth, latency, and global
synchronization. Fast Ethernet provides sufficient per node
bandwidth in many cases but large scale systems are limited
by global switch throughput. Advanced algorithmic
techniques have reduced sensitivity to communication
latency and slow global synchronization barriers such that
Fast Ethernet latency can be tolerated by many applications.

 Emerging System Software Environments : A critical mass
of necessary system software is being assembled but
additional development in functionality, robustness, and
interoperability is required for full benefit of these systems
to be realized. Environmental requirements differ
dramatically between small single-user Beowulf-systems and
large “dreadnought” scale systems supporting a broad user
base and multiple simultaneous users. While the small
system software environment appears to be converging,
dreadnought support is still an open question and few users
are completely happy in either case at this stage.

 Next Generation Capabilities : Near term technology
advances in processor, busses, and networking will make a
quantum leap in capability at low cost in the next two years
and Beowulf system methodology will be positioned to take
immediate advantage of these improvements for end-user
workloads.

 NASA Beowulf Community Established : The workshop
met its important objective of establishing a NASA-wide
community in Beowulf-class computing and identifying near
term directions necessary for achieving full benefits of its
potential capabilities. A framework of web sites, e-mail
lists, and special interest groups will be established by this
community to facilitate NASA exploitation for “better,
faster, cheaper” high-end computing.

4. SYSTEM AREA NETWORK TECHNOLOGY and
SCALING

The level of interconnect infrastructure to integrate the
processing nodes needs to be sufficient to support
application communication requirements but small enough
to keep cost within appropriate bounds. It can be expected
that as the number of nodes of a system is increased, that the
cost of the integration network grows superlinearly. An
important factor is the level of interconnect required for

balanced computation, where the network does not become
the bottleneck. A rule of thumb is that the network should
cost approximately one quarter of the total system cost.
Given that a current node cost is between $1600 and $1800
per node without communication, the cost for
communication per node should be between $530 and $600
per node.

Several alternative technologies are being employed to
integrate clusters of PCs. Fast Ethernet has a peak
bandwidth of 100 Mbps. Each network interface controller
(NIC) costs approximately $50. Latency for messages
between applications between separate nodes is roughly 100
microseconds (less than 80 microseconds has been observed).
Eight-way and 16-way non-blocking switches are available.
With discounts, a 16-way switch costs between $2500 and
$3000 per switch. For small systems (16 processors or
less), the per node cost for communication is perhaps about
$225, much less than the $600 per node that is considered
acceptable.

Myrinet is a second high bandwidth network developed to
integrate workstations and as a system area network (SAN).
Its per node bandwidth exceeds 1 Gbps and it exhibits a
latency of below 20 microseconds. Available today are 8-
port switches. These are relatively inexpensive devices
costing less than $3,000 a piece but are blocking and can
lead to issues of contention under heavy loads or when used
in large topological structures. Unfortunately, the NICs for
Myrinet are expensive in the range of $1,400 per port. With
the high price of the interconnect cables, a system
employing Myrinet can dedicate half of the cost to the
communication network; probably not the balance one
would choose.

For small systems of up to 16 or 24 nodes, single-switch
solutions using Fast Ethernet are simple and cost effective.
Beyond that scaled systems require some compromises in
cost and performance. A number of different techniques have
been attempted. Just achieving up to 240 processors is not
difficult requiring a two-level tree comprising nodes of 16-
way Fast Ethernet switches. This costs little more per node
as only a single additional switch at the root node of the tree
is required. And where locality can be exploited,
communication between processors on the same switch is
just as fast as the smaller systems. But for system wide
random communication, the root node switch can be a severe
bottleneck as well as imposing a somewhat greater latency.
One solution to this problem would appear to be to use
multiple switches at this root network node but this turns
out to be impossible because the “spanning tree” routing
algorithms used by these switches preclude multiple paths
existing between any two points. Thus, bi-section
bandwidth can not be increased by ganging multiple
channels.

If processing nodes can also serve as networking nodes, then
highly varied and sophisticated topologies can be
constructed. The impact is that each such processor node
adds some delay in the message packet transmission time as
well as subtracting from the overall compute capability of

the processor itself. Within these constraints, the scalability
of such organizations can be substantial in size. One
additional difficulty is the limited number of NICs that can
be employed from a single processor. NICs with up to four
Ethernet ports are available. An up to four of these can be
included in a single node, limited by the number of PCI bus
slots available. A hypercube topology is possible with
degree 4, 8, 12, or possibly 16 (ports) per node which could
allow many thousands of processors to be interconnected in
a single system. Small hypercube systems have been
implemented with some success in spite of the additional
processor node latencies. Another such structure with fixed
degree (3 or 4) are toroidal topologies, again employing
through processor communication. If anything, these permit
even larger numbers of processors without increasing the
number of ports per processor node. But bi-section
bandwidth does not grow adequately while network latency
does expand significantly. Such systems are probably only
appropriate for certain classes of applications with well
behaved and highly localized communication patterns.
Hybrid topologies using both switches and through
processor communication can provide superior performance
and price performance when data access patterns across
processors are known and taken into account. Switches
connecting subsets of total system nodes can handle high
bandwidth traffic without blocking while through-processor
node communication permits high scalability and large
system structures. This is particularly useful for data flow-
like computing data streams.

Another approach is using a hierarchy of communication
technologies for moderate bandwidth channels into each node
and high bandwidth backplanes for global communication.
An example of such a system is the Prominet P550 switch
with 22 Gbps switch throughput connecting clusters of 20-
port Fast Ethernet channels. Up to 120 ports can be so
connected or multiples of these backplanes can be
interconnected for even greater system size. Caltech’s Center
for Advanced Computing Research has a 160-processor
system employing two such backplanes. Each handles 80
Fast Ethernet ports and the two backplanes are connected

together by four channels, each capable of 1 Gbps data rate.
This technology is likely to expand to enable dreadnought-
scale systems of a few hundred processors and at a cost of
about $500 per processor.

5. APPLICATIONS and ALGORITHMS

If there is a single objective of Beowulf directed applied
research it is the near term application of these systems for
high performance at unprecedented cost for a broad range of
NASA problems. At issue are examples of such
applications, their scaling characteristics, the impact of
networking on application behavior, and the quality of
support programming environments.

Latency is the biggest difference between a Beowulf and a
supercomputer. However there are latency tolerant
applications, e.g., when the resolution is sufficient but more
physics per grid point gives more return. Highly tuned
applications such as benchmarks are often latency tolerant.
However, multiprocess applications often have gratuitous
synchronizations that inhibit performance on Beowulf-class
systems. One important factor is global barrier
synchronization which is particularly costly on Beowulf-
class systems. It is necessary to reformulate our applications
to remove unnecessary (sometimes implicit barriers)
synchronizations. A better understanding is needed about
concurrent, latency tolerant, hierarchical memory (parallel
out-of-core) algorithms. David Bailey of NASA Ames
Research Center says that researchers at Ames are becoming
interested in pursuing this problem. There is a chance that
we can trade network bandwidth for latency by reducing the
number of synchronizations.

Even in the short time that Beowulf-class computers have
been available, a number of important scientific and
engineering codes have been developed to perform real-world
end user computations. Table 1 below provides a
representative list with an emphasis on but not limited to
NASA-related applications:

Table 1. Scientific and Engineering Codes Developed for Beowulf-class Computers

Organization Code

ARC Implicit CFD, FFTs, Multigrid NAS Benchmarks

Caltech Astrophysical N-body Tree Codes, Simulation Result Analysis
Codes, Smooth Particle Hydrodynamics Code, Vortex Dynamics,
Reactive Chemical Flow

Clemson Parallel File System, Gauss Siedel Sorting

Drexel N-body Tree Code, SPH, Weather and Storm Front Modeling,
Nuclear Shell Model Code, Particle Scattering

GMU Combinatorial Optimizations

GSFC, Drexel N-body Gravity Code

Table 1. Scientific and Engineering Codes Developed for Beowulf-class Computers, cont.

Organization Code

GSFC, Drexel, CESDIS Prometheus, 2-D PPM, Stellar Convection, 4 Gflops on the Hive

GWU Level Zero Processing from Telemetry, GSFC code 500

GWU, GSFC, CESDIS Wavelets, Image Registration

JPL 3-D Planetary Thermal Convection, Ocean Circulation Code
Finite Difference Electromagnetics Code, Finite Element EM
code, Physical Optics EM code, 3-D Fluid Flow with Multigrid,
Parallel MATLIB, 2-D FEM EM with Scattering

NIH Macro Molecular Simulations and Modeling: CHARMM,
AMBER; Quantum Chemistry: GAMESS

Impact of Network on Application Performance

Applications vary significantly in the amount of
interprocessor bandwidth required and the latency of such
interconnection that they can tolerate. To understand the
requirements of a range of applications is nontrivial.
However, some studies on representative problems have
been performed that are beginning to reveal the level of
communication that may be necessary.

Studies conducted by Los Alamos National Laboratory
comparing performance of the N-body gravitational tree code
were conducted on Loki, a 16-processor Beowulf-class
system using Fast Ethernet interconnect, with a 16-
processor slice of the ASCI Red machine, which uses
essentially the same parts but differs in its communication
network. The ASCI Red network has much higher
bandwidth and lower latency such that it might be considered
almost infinite compared to the more modest Beowulf-class
system. The studies showed that overall performance
improvement of ASCI Red versus Loki was on the order of
25 to 30%.

Analysis performed at the NASA Ames Research Center on
three of the NAS Parallel Benchmarks examined the impact
of both network bandwidth and latency on a per node basis
over a range of several hundred nodes. Two important results
were derived from this investigation. The first showed that,
at least for these problems, network latencies on the order of
100 microseconds is good enough with the sustained
performance near that of the ideal case for more than 200
processors. The codes run (SP, LU, and BT) were developed
to be latency insensitive so these results should not apply to
any arbitrary, even parallel, code. But these results do
demonstrate that for a set of benchmarks crafted to reflect
NASA requirements, algorithms can be devised with
sufficient built-in latency tolerance that Fast Ethernet
technology is acceptable.

The second result relates to network bandwidth, again for the
same set of benchmarks. At 100 nodes, degradation of

performance for 8 MBytes/second per node bandwidth with
respect to essentially infinite bandwidth is approximately
15% for the SP benchmark. At 300 nodes the performance
degradation is estimated at 25% for this benchmark. Similar
experiments run for LU and BT showed 4% and 8%
degradation, respectively, at 100 processors. These findings
indicate that Fast Ethernet provides acceptable bandwidth but
that some performance improvement would be derived from
some increase in network bandwidth. This implies that the
use of channel bonding to support dual networks might be a
useful approach. There is one underlying assumption of this
study which has yet to be justified in practice. It assumes
that there is sufficient global network bandwidth to support
100 Mbps per port. Furthermore, no consideration was
given to the issue of contention which suggests, therefore,
the possible need for non-blocking switches interconnecting
hundreds of nodes. Such technology at sufficiently low cost
is not available today.

An empirical study at the NASA Goddard Space Flight
Center compared 10 Mbps Ethernet with 100 Mbps Fast
Ethernet in a series of file copy experiments locally and
between nodes. It showed that regular Ethernet (10 Mbps)
was a bottleneck and severely constrained overall file copy
throughput, causing a degradation of 80% in the worst case
measured. In contrast, Fast Ethernet was shown to exhibit a
degradation of about 15%, worst case. The results of these
experiments again demonstrate that Fast Ethernet provides
adequate network bandwidth for Beowulf-class systems and is
balanced with respect to the other resources comprising these
systems.

Algorithm Scaling Characteristics

The following distinguish the characteristics of application
algorithms that scale from those that do not scale.

1. Applications that are written in a “parallel out-of-core”
style tend to run well on the Beowulf-class systems. This is

because the granularity of the parallelization is large and
explicit.

2. Applications that can be written without explicit global
synchronizations tend to run well on Beowulf class systems.
For example, explicit time step, gridded CFD codes can use
pairwise send/receive pairs.

3. Applications that combine all of their communications
into one massive communication, such as one global
transpose.

Grid-based CFD, Image processing, Tree N-body codes
already work well on a Beowulf-class system.

There are a number of application-driven roles that Beowulf-
class systems can play in significantly advancing the
computational objectives of NASA. Some of these are listed
below.

1. Low cost, locally controlled computing platform for
small groups doing NASA-supported computational science.

2. NGST and Space Interferometry missions both want
control over the computing platform. An advantage of a
system wholly owned by a project is that the project can
control the queuing system. The Beowulf architecture can
support an on-demand client/server system.

3. Low cost, locally controlled educational platforms.

4. Remote Validation Centers need inexpensive, reliable
systems distributed around the nation to run a small set of
standard applications for that region’s specific data needs.

5. Data assimilation needs scalable computing systems with
large I/O capabilities.

6. Multispectral data processing and image registration are
both very parallelizable.

Application Performance Analysis

There is an established literature about scaling of selected
applications. Future Beowulf application papers should
include performance modeling to include the dependency on
computation, memory bandwidth, interprocessor bandwidth,
and barrier synchronizations. Exhaustive analytical formulas
are great but impractical. Identify the parameters that are
useful that can be collected in a automatic manner (e.g.,
Mike Warren’s flop, page faults, integer ops, cache
misses).The message passing libraries should give statistics
about message traffic and synchronization. We recommend
that an empirically fitted performance model can be included
in Beowulf papers that try predict future performance on
Linux systems. Someone could develop a utility that collect
the statistics during a run for MPI-like XPVM or T3E
apprentice. Someone could develop a utility that will take
the collected statistics and create an empirical formula.

6. SYSTEM SOFTWARE and TOOLS

Beowulf-class systems require a robust software environment
for application programming and resource management.
NASA contributed significantly to the development of a set
of guidelines for software environments on parallel systems
under the leadership of Prof. Cherri Pancake of Oregon State
University. The principal requirement areas are as follows:

— Application Development
— Debugging/Tuning Tools
— Low-level Programming Interfaces
— Operating System Services
— Ensemble Management
— Documentation

It was an objective of the NASA Beowulf workshop to
survey available software and ongoing software development
projects for each of these areas as they relate to Beowulf-
class systems and to identify gaps within this framework
that need to be addressed by future development and/or
porting activities. For each of the areas specified above, a
significant body of software exists or is under development.
A detailed list is provided in Table 2 below.

Table 2. Software/Tool Areas Existing or Under Development

Software/Tool Areas Name/Status

Application Development

Utilities sh, csh, grep, egrep, sed, diff, vi, ex, make, et al.; all available via GNU
Languages f77, C, C++, f90, linker, mixed language support

GNU C, C++, f77
PGI C, C++, f77, HPF
Absoft f77, f90
NAG f77, f90

Table 2. Software/Tool Areas Existing or Under Development, cont.

Software/Tool Areas Name/Status

Debugging/Tuning Tools

Interactive Parallel
Debugger/Postmortem
Debugger

ARC P2D2 project is being ported to Beowulf-class clusters

Profiling Tools Single Processor; Standard Gprof Utility

Event/Message-passing
Tracing Tools

PABLO project
ARC AIMS project may be ported to Beowulf-class clusters

Hardware Performance
Monitoring Tools

LANL has the beginnings of a hardware monitoring tool

Low-level Programming Interfaces (Libraries)

Message Passing MPI, PVM
Argonne MPICH, LAM MPI, publicly available PVM

POSIX Treads Available

Math Libraries
(Optimized Single
Processor)

FFT, BLAS, Random; BLAS and Random Number Generator Available

Math Libraries (parallel) FFT, Plapack Available
Array Permutation
Timers (Wall-Clock, System, and User Time) All Standard Features Of
Linux

Parallel I/O Clemson PVFS parallel file system (beta quality?)
ARC PMPIO MPI-2 I/O library (available)
Argonne ROMIO MPI-2 I/O library (available)
ARC ESP FS parallel file system (development just beginning)

Operating System Services

TCP/IP Standard Part of Linux

Files System (w/Long
Names, >4GB File
Systems, >4GB Files)

Available, Except >4GB Files Which is in Development

Job Queuing and
Scheduling (Batch,
Space-sharing, Time-
sharing)

EASY
LoBoS Queueing System
ARC PBS Project

Accounting ARC Acct++ Site-wide Accounting Project (will be ported to Linux)

Quotas and Limits
Enforcement

Other software requires enhanced development. For example,
particularly important is a set of ensemble management
tools, “Beoware, Grendel, or Beotools,” that is under
development and which is providing increasing control of
the distributed resources as a single system image.

But for others, development is a priority. These include:

— Common Boot/ Install/Configure Package
— System Monitoring Web-Based Software
— Parallel rsh, ps, kill, top, etc.

Listed below are other software examples that require
enhanced development as well.

— Rock Solid MPI
— Batch Job Queuing & Scheduling
— Parallel File System
— f90 (Absoft and NAG supply compilers), perhaps a grant

to move g77 to g90
— Optimized math libraries (collect and put into RPMs);

BLAS, Linpack, LApack, PLApack (rather than
SCALapack); MIT FFT library

— Unified system image software
— Fast synchronization software
— Job accounting
— Gang scheduling

Documentation

There is a substantial body of documentation for Linux,
MPI, and PVM. Some documentation directly related to
Beowulf specific issues is available via the web. A new
book, “How to Build a Beowulf”, is being developed by
Sterling, Becker, and Salmon.

Other Issues for Software Environments

A critical-mass is beginning to form, but would greatly
benefit from more community development. It was agreed to
create a new mailing list devoted to Beowulf developers
(developers@beowulf.org), and to use the “beowulf.org”
address as a clearing house for information. In addition,
follow-up communication is essential, and a follow-on
workshop should be considered.

In addition to concrete software development, more work
needs to be done in three related areas: hardening software,
software packaging and Beowulf-specific documentation.
Considerable software has been written for Beowulf-class
clusters that works for the author (and perhaps a few brave
individuals), but isn’t ready for prime time. Given additional
time and resources, “hardened” versions of this software
(e.g., parallel rsh scripts and hardware performance
monitoring utilities) would be of great benefit to the larger
Beowulf community. General agreement was reached that a
common software packaging methodology would enhance
cooperation, and that RedHat RPM format should be the
basis for such packaging. Finally, Beowulf-specific

documentation, beginning with a FAQ and quickstart guide,
should be created.

Standards development also would enhance the Beowulf
effort. Areas identified for standardization include the parallel
model of execution (to foster communication among
researchers); the parallel rsh interfaces (to permit portable
script development); and a method of describing cluster
architecture (to support automated tools for configuration,
booting, and monitoring the cluster).

Finally, transfer of Beowulf technology was addressed. The
discussion included approaches ranging from traditional
organizational methods, to use of the GNU or Linux “free
software methodology” where no restrictions are made on
software distribution, to forming an agreement with one of
the commercial vendors of Linux (e.g., RedHat) to give
them non-exclusive rights to all software (letting them give
it away). The consensus seemed to be that the best
alternative was to use the free software methodology—
anyone can contribute, someone acts as a central contact and
integrator, and all developed software is freely distributed—
which has resulted in such wide distribution, use and
progress with Linux.

Beowulf-class systems come in two flavors: small and
“dreadnought.” The small systems are characterized by
having about 30 nodes and a few users who run a couple of
different applications. The dreadnought flavor is hundreds of
nodes and many users running a broad range of applications.
Although there are a variety of configuration and software
choices, the architecture of small systems seems to be
converging; larger systems, however, remain an open
question.

HPF poses serious problems for Beowulf clusters due to
unnecessary implicit synchronizations. However, the use of
a global address space is still very appealing to many NASA
scientists. There may be “raw” shared memory libraries that
may work for a Beowulf-class system with tens of
processors. For example, TreadMarks from Rice University
has a relaxed consistency shared-memory model that relies
on the user to insert the shared-memory synchronization
library calls. A prototype of relaxed consistency shared
memory was implemented at GSFC called Hrunting, but the
work needs to be finished soon.

7. SCALABILITY

The first Beowulf-class systems were small and medium size
with many 8-, 16-, and 32-processor systems and a few 48-
processor systems. These small- to medium-scale systems
were well suited to the software and hardware resources
available and were capable of a few Gflops performance on
favorable applications. Systems beyond this size (up to a
few hundred processors), referred to as “dreadnought-scale”
are being planned and assembled and difficulties have been
encountered, inhibiting their effective use under certain
circumstances. A number of issues were explored to better
understand the nature of scalability to dreadnought-scale
Beowulf-class systems.

Metrics

Scalability spans a number of metrics in system capability
which include the conventional parameters of all
parallel/distributed machines:

— Flops
— Ops
— Memory Size
— Memory Bandwidth
— Disk Capacity
— Disk Access Rate
— Network Bandwidth
— Network Latency

Even this list can be expanded based on circumstances such
as message packet size, cache behavior as a function of
memory access patterns, similar issues related to disk access
patterns, and so forth. But additional metrics of scalability
are also important to Beowulf-class systems.

 Efficiency . Efficiency relates to the ratio of sustained
performance versus ideal performance of a multiple processor
system. Efficiency is a function of workload scaling as well
as system size. It is easier to get effective use of increased
processing resources if the problem size grows as well, thus
enabling better science in a given time. Alternatively, with a
problem size invariant with system size, the same problem
is executed in reduced time.

 Cost per node . Cost per node is an important discriminator
between Beowulf-class systems and vendor supplied
systems. Ordinarily, this may be in excess of an order of
magnitude difference, although some low end workstations
exhibit price differentials (including special discounts) of
less than a factor of four. But a fairer cost is that per
delivered performance: for example, cost per Mflops or Gops
per $M where performance is sustained for some suitable
benchmark application(s). As the system size is scaled up,
the cost in each case increases for a Beowulf-class system
because the efficiency tends to decrease and the network cost
per node increases superlinearly.

 Number of Users and Applications . The number of users and
applications that can be supported at one time as systems
scale up is important. For small- to medium-scale systems
where the cost is under $100K, these systems are likely to
be operated in a single-user mode. But for dreadnought-scale
systems where costs may exceed half a million dollars (a
1000-processor system using dual processor nodes will cost
under $2M), multiple users and jobs can be anticipated to
amortize cost and make better use of available resources.

 Application diversity . Application diversity would
characterize the generality of the system across algorithm
and science/engineering problem types. This is difficult to
quantify but is key to establishing both the utility and
scalability of Beowulf-class systems.

Determining Factors

The scalability of a system class such as Beowulf depends
on a number of complementing factors, each of which must
scale accordingly in order for different magnitude systems to
operate in a balanced manner. Much of the current work is in
making each of these areas scalable to extend the utility of
Beowulf systems to 10 Gflops and beyond.

Hardware M2COTS parts impose limitations in scaling.
Even those which claim to scale have not been rigorously
tested under real-world application-driven conditions.
Network hardware, especially switches, is among the
foremost hardware components of concern. The number of
disks on EIDE or SCSI channels (and the number of such
channels) is a second factor. A third factor is the ability of
memory bandwidth to support multiple processors per SMP
motherboard.

File system scalability through parallel I/O software,
parallel file servers, and RAIDS is essential to provide
adequate usable bandwidth to secondary storage.
System software scalability has to support the hardware
scalability. Some system software can run serial with no
impact on system scalability while other operating system
modules have to be changed both quantitatively (e.g.,
constants, table size) and in terms of methodology (e.g.,
linear search changed to O(log) search).

Application software must expose sufficient parallelism to
spread across hundreds of nodes with coarse enough
granularity that increase communication latency can be
overlapped with computation.

Hardware Bottlenecks

Beowulf-class systems are pushing the frontiers of COTS
hardware scalability many of the available components have
been used almost solely in single processor systems or in
small clusters of loosely networked PCs or workstations. In
most ways, hardware scalability is directly or indirectly tied
to network scalability as that is the medium of integration.
Some additional hardware issues also impact scaling such as
secondary storage or memory bandwidth as is discussed
below. Hardware bottlenecks can be mitigated in part
through software at the applications and systems levels. But
these limitations tend to narrow the bounds of applications
or system size that can ultimately be employed.

There are few network mechanisms capable of supporting
Beowulf-class systems scaled to hundreds of nodes. Myrinet
switches are 8-port and blocking. While large structures of
these can be devised, the blocking cascades, and behavior
may not scale for moderate or heavier loads. A number of
suppliers of Fast Ethernet switches (8, 16, or 24 ports) use
spanning tree routing algorithms that limit connections
between any two points to a single path. Thus, ganging
multiple channels is not possible to increase bandwidth and
a bottleneck in bandwidth results. A new class of switches
combining Fast Ethernet with very high bandwidth
backplanes is coming on the market, but so far there has

been little experience with these. Latency also grows with
system scaling and network size which aggravates
performance.

The cost of networks grow superlinearly with scale. Beyond
a certain point the cost of the network can overwhelm the
cost of the rest of the system. A cross-switch cost scales
O(n2). A trade-off between cost, latency, and bandwidth
results from different interconnect schemes even as the
choice of topologies is limited by other hardware constraints
like the spanning tree routing algorithms.

Fast Ethernet is good for small systems but the bi-section
bandwidth per node decreases as the height of the tree
increases to accommodate an increasing number of nodes,
given the fixed degree of the switching nodes. Myrinet is
fast and can grow to large sizes, but is initially expensive
and an increasing proportion of the switch ports are used for
internal network connections; it is easy to make a Myrinet
network that is more than half the total cost of a large
Beowulf-class system.

While most parts used by Beowulf-class systems are
M2COTS, there are no obvious external market forces
driving the development of large-scale, low-cost switches.
The market for small- and medium-scale Beowulf systems is
expected to be relatively large due to the low entry-level cost
and the need for such systems in academic institutions with
constrained budgets.

Network bandwidth can be limited, not only by the network,
but by its interface to the node. This may be a fundamental
constraint of the memory bandwidth of the node or of the
interface bus which today is usually 32-bit PCI. Some new
motherboards include memory interleaving for higher
memory bandwidth. Also, 64-bit PCI with a higher clock
rate will be available shortly as well.

Memory bandwidth limitations impact another aspect of
system scaling, the number of processors within a single
SMP node. While motherboards with up to 4 processors per
node are available, and in a fully cache-coherent
configuration, the memory bandwidth is inadequate to
support good utilization of these processors except in
particularly carefully crafted codes that make particularly
favorable usage of the two layers of caches on each
processor.

Increases in hardware failures are likely as system scale
grows. This is especially true during the initial phase of
system operation. Experience shows that 95% of hardware
failures occur as a result of infant mortality with the most
likely candidates being disks, processor fans, power
supplies, and network cards in that order of probability. Past
that point, up times for moderate size systems have been
measured in months.

Processor clock rates are likely to double over the next two
years pushing additional requirements on the memory, I/O
interface, and networking resources.

Software Bottlenecks

Scalability from a software perspective relates both to
performance efficiency and to usability with increased
processor count. With regards to performance, software must
provide the means for representing algorithm parallelism and
for effectively utilizing system resources. This also involves
the efficiency of the system software itself. Software
enhances usability in the presence of ever larger
configurations by providing a “single system image” of the
system to the user so that system control does not require
explicit node-by-node manipulation and by providing timely
system fault detection and recovery mechanisms.

The “single system image” approach requires system
software that represents the various name spaces of the
system to be unified across the system, providing a set of
user commands that controls the operation of the machine in
terms of these name spaces without requiring explicit logon
to individual nodes. For example, this provides a global
view of all running processes and tools such as “killall”
independent of the number of processors involved.
Performance monitoring of system operation is essential for
identifying hot spots in parallel execution and load balancing
to determine bottlenecks and poor utilization which both
impact system performance. User presentation should
convey system wide behavior independent of the number of
processors employed. It should also be able to represent only
those processors in use for a given application in the case of
space multiplexing.

Failure management becomes more important as the number
of system nodes increases. Static techniques to ignore
unavailable nodes are a minimum requirement, but dynamic
means of fault detection, isolation, checkpointing, and
restart are essential for large system configurations.

SMPs of two to four processors are currently supported by
Linux but in a restricted way. Specifically, the current
implementation does not permit more than one O/S service
call to be performed simultaneously so that operating
system work does not speed up with additional processors
within an SMP node.

Near Term Directions

Beowulf-class computing system technology is moving
aggressively forward in hardware capability and software
sophistication. Some of the trends expected over the next
two years are considered below. These assume that certain
new project starts will be undertaken, in part, as a
consequence of assessments such as this first Beowulf
Workshop.

 Networking . Networking is about to make another quantum
jump in M2COTS products. Gigabit Ethernet, which is now
operational, may drop in price the order-of-magnitude
required to make it cost effective for Beowulf-class
computing. This will eliminate the local SAN connection as
a constraining factor on scalability.

 Bandwidth . Very high bandwidth network switch backplanes
are beginning to become available and at a price that will
permit Beowulf-class systems scaled to a few hundred
processors.
 Linux . New versions of Linux will permit parallel execution
of O/S service calls within SMPs.

 MPI-2 . MPI-2 will provide new features for better control
and management of system processes, communication, and
synchronization.

 I/O . For I/O, 64-bit, high bandwidth PCI buses will be
incorporated in future motherboards to improve network and
disk access to processor and memory systems.

 Memory . Memory capacity and bandwidth through
interleaving will be significantly enhanced on motherboards.

 System Software . Its expected that continued improvement
in systems software for job scheduling, debugging, and the
system environment will occur incrementally through the
contributions of many sources.

8. HETEROGENEOUS COMPUTING

One of the challenges to the viability of Beowulf-class
computing is the issue of longevity of investment. How
long can a particular resource be employed effectively before
it becomes obsolete? The parallel computing industry has
seen machines removed from the floor, not because they are
unable to perform their task, but because their maintenance
contract is too expensive for the level of performance
delivered. In one instance last year, a particular 16-processor
computer less than three-years old was powered down for the
last time because the annual cost of its maintenance contract
could purchase an entirely new and complete Beowulf of
comparable performance. But similar trends challenge
Beowulfs themselves. Technology advances are moving very
fast. Every few months a new processor with a higher clock
speed, larger cache, or improved instruction set becomes
available, making the installed base of processors slightly
less state-of-the-art. Is the only answer to throw out a
system every eighteen months, or is there a better way to
extend the contribution of the value made? An alternative is
to consider the possibility of Beowulf-class systems
comprising multiple generations of technology. In part this
possibility exists because there are a number of different
metrics of performance and just because a processor node
loses ground in one dimension does not mean it can not
perform important functions in the other dimensions. For
example, in three generations, floating point performance
has improved by about a factor of 20 but disk access rates
have improved less than a factor of 3. This mixing of
generations and distinguishing capabilities breaks the model
of uniform processing elements and leads to the conclusion
that cost effective Beowulf-class systems, at least of
moderate to dreadnought-scale, will invariably become
heterogeneous in nature.

There are a number of reasons why heterogeneous com-
puting will be the norm for Beowulf-class computing.
Longevity of investment permitting multiple generation
machines is one. Another reason is that the just-in-place
feature of Beowulf assemblage encourages these systems to
expand in time. Each new part is generally optimized for the
sweet-spot in price and capability. For example, disk prices
have plummeted over the last year resulting in new nodes
having twice the disk capacity of the older ones. This is a
form of heterogeneity. Processor cache sizes are changing.
Currently, Pentium II processors with MMX and 300 MHz
clock are being selected for Beowulf sites instead of the
Pentium Pro at 200 MHz, and systems that are expanding
may also start to incorporate these newer processors.
Network structures also do not expand uniformly. This is in
part due to the rather stringent size constraints and in part
because it is easier to incrementally add subnetworks than
reconstruct the entire system network from scratch (although
it is not all that difficult). Going from 16 processor to 18
processors may require the addition of a whole new layer to
the global network. When a Beowulf-class system is being
used for a particular and known workload, data movement
requirements can be supported by specific network structures
to match data rates resulting in non-uniform topologies.
Different processor nodes can play different roles. There has
been a long history of using some processor for
computation while others are dedicated principally to I/O or
secondary storage. This diversity of function across the
processor array will be if anything extended in Beowulf-class
systems. The availability of 2- and 4-processor SMP nodes
provides yet another degree of freedom in system structure.
But the sharing of such resources as I/O busses and memory
bandwidth imposes more variation in overall system
behavior.

The implications of employing heterogeneous systems are
far reaching and will require advanced means of using future
Beowulf computers as well as sophisticated system software
to support such methodologies. Task scheduling must deal
with differences in node performance. In order for this to be
possible, parallel applications will have to be structured
with finer granularity tasks to balance variations in node
throughput. Otherwise, system response time would be fixed
to that of the slowest computing resource. Distributed file
managers must contend with non-uniform node disk
capacities and complex access handling throughputs. User
optimizations have to be effective across variations in
system scale and configuration. Ultimately, system
resources have to be virtualized with respect to the user
workload, presenting a sea of resources to all users supported
by runtime adaptive allocation system software. These
requirements will impact all levels of software including
application algorithm design, language constructs, compiler
controls and optimizations, and runtime system software
policies and mechanisms.

9. FUTURE DIRECTIONS

The in-depth review of the status, capabilities, limitations,
and opportunities for the use and evolution of Beowulf-class
systems identified a number of near-term tasks that, if

performed, would accelerate the utility of Beowulf-class
systems in meeting NASA requirements as well as those of
the general community.

 Strategic Directions : There is the opportunity to
significantly enhance parallel computing capability through
Beowulf-class systems and ways should be devised to enable
their early use.

 System Software Development : Near term development of a
robust Beowulf software environment should be supported
by employing existing tools where possible, integrating
research system software where appropriate, and developing
(or sponsoring) new software components where necessary.
In support of this, a common framework for packaging all
related software should be adopted.

 Hardware Systems : Scaling studies of critical hardware and
software components should be conducted to establish means
and methods for implementing Beowulf-class system
structures across a broad range of capabilities and size from
small through “dreadnought” scale systems.

 Applications and Algorithms : Suitability of Beowulf for a
broad range of applications should be determined and the
underlying factors quantified and understood. A new
generation of latency tolerant algorithms will have to be
developed for the important computational schema. This
must include detailed performance measurement and
modeling of parallel applications and may require new
monitoring tools. Needed are optimized serial and parallel
libraries for important classes of computing such as BLAS
and FFT.

10. SUMMARY oF CONCLUSIONS

Beowulf-class computing derives its heritage from many
years of experience in hardware technology, parallel
computing methodologies, and computational techniques.
The driving force behind the relatively sudden expansive
application of the Beowulf approach to cluster PCs is the
recent maturity, capabilities, and synergism of these factors
that bring into balance the requirements, costs, and delivered
performance. This paper is concluded with a summary of the
status of Beowulf-class computing as understood by the
NASA community represented at the recent workshop.

It has been repeatedly demonstrated that Beowulf-class
systems and other parallel systems comprising clusters of
PCs are very good for some real-world problems. As
techniques for harnessing such clusters are better understood,
the range of applications will grow.

The price-performance of Beowulf-class systems is excellent,
often substantially exceeding any other form of computing
system. As a result, it makes possible access to parallel
computing at an unprecedented degree due to its low entry
level cost.

Not all applications and algorithms are suitable for PC
clusters, including Beowulfs. This is due either to
insufficient parallelism that scales with system size, or high
communications requirements and latency sensitivities.

Historically, workstation microprocessors significantly out-
performed their PC counterparts, especially in floating point
capability. That gap has closed almost entirely and is
anticipated to be eliminated in the next generation of PC
microprocessors. This closure is due in part to the factor of
20 floating point performance gain achieved across the last
three generations of Intel X86 architectures as well as the
migration of the DEC Alpha microprocessor family down to
the PC market.

Historically, workstations were ten times the cost of PCs
and per node costs of parallel systems versus PCs could be
as much as a factor of 25. Recently, vendors have been
aggressive in cost reductions and with the still slight edge in
performance of these systems, the price performance gap has
been closing. While order of magnitude ratios are still
achievable for Beowulfs running particularly well suited
applications, in other cases Beowulf-class systems have been
seen to deliver price-performance advantage of only about a
factor of four.

The major advantage of implementing MPPs with custom
technology was to provide tight coupling of resources by
high bandwidth and low latency internal system area
networks (SAN). But COTS interconnect technology has
advanced dramatically in the last three years and for
applications with modest communications requirements, is
good enough. This trend is likely to continue over the next
couple of years with order of magnitude improvements in
communication price performance and latency.

Shared-memory systems are seen to provide a superior user
interface with a single-system image when compared to
distributed-memory systems (DSMs) such as Beowulfs. But
even on DSMs, users often have to be directly engaged in
the management of locality by explicit allocation of data
objects and executable tasks to separate processing nodes.
Many computational scientists consider this substantially
detracts from the value of DSM and believe that one might
as well use message-passing under these circumstances as
provided by Beowulf-class systems environments.

Institutional and user needs in price and performance differ
widely and, while one class of users might find price-
performance to be the dominant issues, others may find
customer support to be more important to the value of the
end system. Beowulf-class computing provides one subspace
in the overall tradeoff space. Therefore, it is likely in the
foreseeable future, that institutional computing will—and
must—include a mix of system types and capabilities
including, but, however, not limited to, Beowulf-class
systems. Such a mix is likely to provide the best center-
wide resources when measured by overall user satisfaction.

Acknowledgments

Over the last several years, many people have made
substantial contributions to the evolution and effective
application of Beowulf-class computing. These include those
who contributed to the first NASA workshop on Beowulf-
class clustered computing. Among those are Bill Nitzberg
and David Bailey of Ames Research Center, Robert Ferraro
of JPL, Clark Mobarry, John Dorband, and Jim Fischer of
the Goddard Space Flight Center, Phil Merkey of USRA
CESDIS, Dan Ridge of the University of Maryland, and
Tarek El-Ghazawi of George Washington University, as well
as the important work on clustered computing conducted at
the University of Wisconsin and UC Berkeley. Many others
could be cited as well. This paper and the emerging
computing methodologies it represents owes much to those
and many others who have contributed much of their time
and talent. To all who have participated in this revolution,
the authors owe a deep debt. Our thanks also to Mike
MacDonald for his help in the preparation of this paper.

REFERENCES

[1] Bailey, David, T. Harris, W. Saphir, R. Van Der
Wijngaart, A. Woo, and M. Yarrow “The NAS Parallel
Benchmarks 2.0,” Technical Report NAS-95-020, 1995.

[2] Becker, Donald J., Thomas Sterling, Daniel Savarese,
Bruce Fryxell, Kevin Olson, “Communication Overhead for
Space Science Applications on the Beowulf Parallel
Workstation,” Proceedings, High Performance and
Distributed Computing, 1995.

[3] Becker, Donald J., Thomas Sterling, Daniel Savarese,
John E. Dorband, Udaya A. Ranawak, Charles V. Packer,
“Beowulf: A Parallel Workstation For Scientific
Computation,” Proceedings, International Conference on
Parallel Processing, 1995.

[4] Becker, Jeffery C., Bill Nitzberg, and Rob F. Van Der
Wijngaart, “Predicting Cost/Performance Trade-offs for
Whitney: A Commodity Computing Cluster,” NAS
Technical Report NAS-97-023, 1997.

[5] Fineberg, Samuel A., and Kevin T. Pedretti, “Analysis
of 100Mb/s Ethernet for the Whitney Commodity
Computing Testbed,” NAS Technical Report NAS-97-025,
1997.

[6] Reschke, Chance, Thomas Sterling, Daniel Ridge,
Daniel Savarese, Donald Becker, Philip Merkey, “A Design
Study of Alternative Network Topologies for the Beowulf
Parallel Workstation,” Proceedings, High Performance and
Distributed Computing, 1996.

[7] Ridge, Daniel, Donald Becker, Thomas Sterling, Philip
Merkey, “Beowulf: Harnessing the Power of Parallelism in a
Pile-of-PCs,” Proceedings, IEEE Aerospace Conference,
1997.

[8] Salmon, John K., Michael S. Warren, and G. S.
Winckelmans, “Fast Parallel Treecodes for Gravitational and
Fluid Dynamical N-Body Problems,” Intl. J. Supercomputer
Appl., 8, 29-142, 1994.

[9] Salmon, John, and Michael S. Warren, “Parallel Out-of-
Core Methods for N-body Simulation,” 8th SIAM
Conference on Parallel Processing for Scientific Computing,
Philadelphia, 1997.

[10] Sterling, Thomas, Donald J. Becker, Daniel Savarese,
Michael R. Berry, Chance Reschke, “Achieving a Balanced
Low-cost Architecture for Mass Storage Management
through Multiple Fast Ethernet Channels on the Beowulf
Parallel Workstation,” Proceedings, International Parallel
Processing Symposium, 1996.

[11] Warren, Michael S., Donald J. Becker, M. P. Goda,
John K. Salmon, and Thomas Sterling, “Parallel
Supercomputing with Commodity Components,”
Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA‘97), 1372-1381, 1997.

[12] Warren, Michael S., John K. Salmon, Donald J.
Becker, M. P. Goda, Thomas Sterling, and G. S.
Winckelmans, “Pentium Pro Inside: I. A Treecode at 430
Gigaflops on ASCI Red, II. Price/Performance of $50/Mflop
on Loki and Hyglac,” Supercomputing‘97, 1997.

